Scientific Reports (Feb 2022)
Identification and validation of a cigarette smoke-related five-gene signature as a prognostic biomarker in kidney renal clear cell carcinoma
Abstract
Abstract Cigarette smoking greatly promotes the progression of kidney renal clear cell carcinoma (KIRC), however, the underlying molecular events has not been fully established. In this study, RCC cells were exposed to the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine) for 120 days (40 passages), and then the soft agar colony formation, wound healing and transwell assays were used to explore characteristics of RCC cells. RNA-seq was used to explore differentially expressed genes. We found that NNK promoted RCC cell growth and migration in a dose-dependent manner, and RNA-seq explored 14 differentially expressed genes. In TCGA-KIRC cohort, Lasso regression and multivariate COX regression models screened and constructed a five-gene signature containing ANKRD1, CYB5A, ECHDC3, MT1E, and AKT1S1. This novel gene signature significantly associated with TNM stage, invasion depth, metastasis, and tumor grade. Moreover, when compared with individual genes, the gene signature contained a higher hazard ratio and therefore had a more powerful value for the prognosis of KIRC. A nomogram was also developed based on clinical features and the gene signature, which showed good application. Finally, AKT1S1, the most crucial component of the gene signature, was significantly induced after NNK exposure and its related AKT/mTOR signaling pathway was dramatically activated. Our findings supported that NNK exposure would promote the KIRC progression, and the novel cigarette smoke-related five-gene signature might serve as a highly efficient biomarker to identify progression of KIRC patients, AKT1S1 might play an important role in cigarette smoke exposure-induced KIRC progression.