Agronomy (Apr 2024)
The Effects of Soybean–Tea Intercropping on the Photosynthesis Activity of Tea Seedlings Based on Canopy Spectral, Transcriptome and Metabolome Analyses
Abstract
Intercropping soybean in tea plantations is a sustainable cultivation system that can improve the growing environment of tea plants compared to monoculture tea. However, the effects of this system on the photosynthesis activity of tea seedlings have yet to be reported. Therefore, we used tea cultivar ‘Zhongcha108’ as experimental materials to investigate the effects of intercropping soybean on the canopy spectral parameters and photosynthesis activity of tea seedlings. Canopy spectral reflectance data showed that soybean–tea intercropping (STS) improved the reflectance of 720, 750 and 840 nm bands in tea seedlings’ canopy. The vegetation indexes (VIs) value related to photosynthetic pigments in STS was obviously higher than monoculture tea (T). In addition, the Fv/Fm and SPAD value in STS were also clearly higher. Transcriptome analysis data indicated that STS induced the expression of light-harvesting complex (LHC) genes, photosystem subunit (Psbs and Psas) genes and dark reaction biological process genes (FBP1, RPE, Calvin cycle protein CP12-1 and transketolase). These results indicate that STS enhanced the photosynthesis activity. The metabolome analysis showed that STS promoted the accumulation of carbohydrate metabolites, which further provided evidence for the enhancement of photosynthesis in the leaves of tea seedlings. This study enhanced our understanding of how intercropping soybeans in a young tea plantation improves the photosynthesis activity to promote tea seedlings’ growth and development.
Keywords