BioResources (Nov 2023)

Classification Analysis of Copy Papers Using Infrared Spectroscopy and Machine Learning Modeling

  • Yong-Ju Lee,
  • Tai-Ju Lee,
  • Hyoung Jin Kim

Journal volume & issue
Vol. 19, no. 1
pp. 160 – 182

Abstract

Read online

The evaluation and classification of chemical properties in different copy-paper products could significantly help address document forgery. This study analyzes the feasibility of utilizing infrared spectroscopy in conjunction with machine learning algorithms for classifying copy-paper products. A dataset comprising 140 infrared spectra of copy-paper samples was collected. The classification models employed in this study include partial least squares-discriminant analysis, support vector machine, and K-nearest neighbors. The key findings indicate that a classification model based on the use of attenuated-total-reflection infrared spectroscopy demonstrated good performance, highlighting its potential as a valuable tool in accurately classifying paper products and ensuring assisting in solving criminal cases involving document forgery.

Keywords