Carbon SH-SAW-Based Electronic Nose to Discriminate and Classify Sub-ppm NO<sub>2</sub>
Carlos Cruz,
Daniel Matatagui,
Cristina Ramírez,
Isidro Badillo-Ramirez,
Emmanuel de la O-Cuevas,
José M. Saniger,
Mari Carmen Horrillo
Affiliations
Carlos Cruz
Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain
Daniel Matatagui
Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain
Cristina Ramírez
Institute of Ceramics and Glass, ICV-CSIC, Kelsen 5, Cantoblanco, 28049 Madrid, Spain
Isidro Badillo-Ramirez
Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
Emmanuel de la O-Cuevas
Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
José M. Saniger
Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
Mari Carmen Horrillo
Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain
In this research, a compact electronic nose (e-nose) based on a shear horizontal surface acoustic wave (SH-SAW) sensor array is proposed for the NO2 detection, classification and discrimination among some of the most relevant surrounding toxic chemicals, such as carbon monoxide (CO), ammonia (NH3), benzene (C6H6) and acetone (C3H6O). Carbon-based nanostructured materials (CBNm), such as mesoporous carbon (MC), reduced graphene oxide (rGO), graphene oxide (GO) and polydopamine/reduced graphene oxide (PDA/rGO) are deposited as a sensitive layer with controlled spray and Langmuir–Blodgett techniques. We show the potential of the mass loading and elastic effects of the CBNm to enhance the detection, the classification and the discrimination of NO2 among different gases by using Machine Learning (ML) techniques (e.g., PCA, LDA and KNN). The small dimensions and low cost make this analytical system a promising candidate for the on-site discrimination of sub-ppm NO2.