Energies (Apr 2021)

Experimental Validation of the Thermal Processes Modeling in a Solar Still

  • Ewelina Radomska,
  • Lukasz Mika,
  • Karol Sztekler,
  • Wojciech Kalawa

DOI
https://doi.org/10.3390/en14082321
Journal volume & issue
Vol. 14, no. 8
p. 2321

Abstract

Read online

Passive solar distillation is cheap and energy-efficient technology but its main disadvantage is low productivity. Thus, there are many attempts to improve solar stills’ productivity, and one of them is changing the mass of the water. This paper presents the results of validation of the thermal processes modeling in a solar still (SS). In order to validate the model, the experimental studies were conducted in a laboratory to ensure uniform climatic conditions. The studies were carried out for 10 kg, 15 kg, and 20 kg of water under three different solar irradiance conditions. The results show that 10 kg and 20 kg of water ensure the highest and the lowest daily productivity, respectively, independently of solar irradiance. When the water mass is 10 kg, the solar still’s productivity is 800 mL/m2/day, 3732 mL/m2/day, and 9392 mL/m2/day for low, medium, and high solar irradiance, respectively. Additionally, it is found that reducing the water mass from 20 kg to 10 kg can improve solar still’s productivity by a maximum value of 21.6%, which is obtained for low solar irradiance. The proposed mathematical model allows predicting the performance of the SS. The results of the theoretical calculations are in good agreement with the results of the experiments. The minimum and maximum deviation between the actual and theoretical productivity of the SS is 1.1% and 8.3%, respectively.

Keywords