Sensors (Apr 2020)
Development and Evaluation of a New Spectral Disease Index to Detect Wheat Fusarium Head Blight Using Hyperspectral Imaging
Abstract
Fusarium head blight (FHB) is a major disease threatening worldwide wheat production. FHB is a short cycle disease and is highly destructive under conducive environments. To provide technical support for the rapid detection of the FHB disease, we proposed to develop a new Fusarium disease index (FDI) based on the spectral data of 374–1050 nm. This study was conducted through the analysis of reflectance spectral data of healthy and diseased wheat ears at the flowering and filling stages by hyperspectral imaging technology and the random forest method. The characteristic wavelengths selected were 570 nm and 678 nm for the late flowering stage, 565 nm and 661 nm for the early filling stage, 560 nm and 663 nm for the combined stage (combining both flowering and filling stages) by random forest. FDI at each stage was derived from the wavebands of each corresponding stage. Compared with other 16 existing spectral indices, FDI demonstrated a stronger ability to determine the severity of the FHB disease. Its determination coefficients (R2) values exceeded 0.90 and the RMSEs were less than 0.08 in the models for each stage. Furthermore, the model for the combined stage performed better when used at single growth stage, but its effect was weaker than that of the models for the two individual growth stages. Therefore, using FDI can provide a new tool to detect the FHB disease at different growth stages in wheat.
Keywords