EPJ Web of Conferences (Jan 2021)

FUEL-CYCLE SCENARIO TO REDUCE RADIOACTIVE WASTE FROM LIGHT-WATER REACTOR

  • Wada Satoshi,
  • Hiraiwa Kouji,
  • Yoshioka Kenichi,
  • Sugita Tsukasa,
  • Kimura Rei

DOI
https://doi.org/10.1051/epjconf/202124713006
Journal volume & issue
Vol. 247
p. 13006

Abstract

Read online

It is important to reduce the amount of trans-uranium (TRU) produced from the existing nuclear power plants to realize sustainable nuclear energy since the some TRU nuclides remain for a long time and have high radioactivity and radiotoxicity. One of the promising solutions is to transmute the TRU nuclides to those with lesser radioactivity and radiotoxicity in the existing nuclear reactors. In the current scheme, the TRU nuclides are transmuted in fast reactors and/or accelerator-driven-systems, however, this scenario seems unpromising in Japan: after the Fukushima Daiichi accident, it is required to reduce the production of TRU nuclides from the light-water reactors. In the previous studies, a concept of FORSETI was investigated, and a nuclear-fuel cycle simulation code ATRUNCYS was developed to study the low TRU production scenario. The FORSETI concept consists of two types of fuels: 1) UO2 fuels with high-assay low-enriched-uranium, and 2) MOX fuels with highly fissile concentrated plutonium reprocessed from the FORSETI-UO2 fuels. The current paper focuses on the following two scenarios: a) once-recycled scenario with the current fuel design, and b) once-recycled scenario with the FORSETI concept. The two scenarios were compared by using the ATRUNCYS code where the simulation studies showed that the amount, radioactivity, and radiotoxicity of resulting waste can be decreased in the FORSETI concept: In the case 1), the production of TRU nuclides decreased in the UO2 fuel; In the case 2), the fission rate increased and neutron-capture reactions of 240Pu and 241Pu decreased in the MOX fuels.

Keywords