Gels (May 2025)

Preparation of Janus-Structured Evaporators for Enhanced Solar-Driven Interfacial Evaporation and Seawater Desalination

  • Junjie Liao,
  • Luyang Hu,
  • Haoran Wang,
  • Zhe Yang,
  • Xiaonan Wu,
  • Yumin Zhang

DOI
https://doi.org/10.3390/gels11050368
Journal volume & issue
Vol. 11, no. 5
p. 368

Abstract

Read online

Solar-driven interfacial evaporation has emerged as a sustainable and highly efficient technology for seawater desalination, attracting considerable attention for its potential to address global water scarcity. However, challenges such as low evaporation rates and salt accumulation significantly hinder the performance and operational lifespan of evaporators. Here, we present an innovative Janus-structured evaporator featuring distinct operational mechanisms through the integration of a hydrophobic PVDF-HFP@PPy photothermal membrane and a hydrophilic PVA-CF@TA-Fe3+ hydrogel, coupled with a unidirectional flow configuration. Distinct from conventional Janus evaporators that depend on interfacial water transport through asymmetric layers, our design achieves two pivotal innovations: (1) the integration of a lateral fluid flow path with the Janus architecture to enable sustained brine replenishment and salt rejection and (2) the creation of dual vapor escape pathways (hydrophobic and hydrophilic layers) synergized with hydrogel-mediated water activation to elevate evaporation kinetics. Under 1 sun illumination, the evaporator achieves a maximum evaporation rate of 2.26 kg m−2 h−1 with a photothermal efficiency of 84.6%, in both unidirectional flow and suspension modes. Notably, the evaporation performance remains stable across a range of saline conditions, demonstrating remarkable resistance to salt accumulation. Even during continuous evaporation of highly saline water (10% brine), the evaporator maintains an evaporation rate of 2.10 kg m−2 h−1 without observable salt precipitation. The dual anti-salt strategies—enabled by the Janus structure and unidirectional flow design—underscore the evaporator’s capability for sustained high performance and long-term stability in saline environments. These findings provide valuable insights into the development of next-generation solar evaporators that deliver high performance, long-term stability, and robustness in saline and hypersaline environments.

Keywords