Revista Colombiana de Estadística (Jun 2013)
Partial Least Squares Regression on Symmetric Positive-Definite Matrices
Abstract
Recientemente ha habido un aumento en el interés de analizar diferentes tipos de datos variedad-valuados, dentro de los cuáles aparecen los datos de matrices simétricas definidas positivas. En muchos estudios de análisis de imágenes médicas cerebrales, es de interés principal establecer la asociación entre un conjunto de covariables y los datos variedad-valuados que son considerados como respuesta, con el fin de caracterizar las diferencias y formas en ciertas estructuras sub-corticales. Debido a que los datos variedad-valuados no forman un espacio vectorial, no es adecuado aplicar directamente las técnicas estadísticas clásicas, ya que ciertas operaciones sobre espacio vectoriales no están definidas en una variedad riemanniana general. En este artículo se realiza una aplicación de la metodología de regresión de mínimos cuadrados parciales, para el entorno de un número grande de covariables en un espacio euclídeo y una o varias respuestas que viven una variedad curvada llamada espacio simétrico Riemanniano. Para poder llevar a cabo la aplicación de dicha técnica se utilizan el mapa exponencial Riemanniano y el mapa log Riemanniano sobre el conjunto de matrices simétricas positivas definida, mediante los cuales se transforman los datos a un espacio vectorial en donde se pueden aplicar técnicas estadísticas clásicas. La metodología es evaluada por medio de un conjunto de datos simulados en donde se analiza el comportamiento de la técnica con respecto a la regresión por componentes principales.