Journal of Materials Research and Technology (Nov 2020)
Mechanical properties of composites with graphene oxide functionalization of either epoxy matrix or curaua fiber reinforcement
Abstract
In the present work, two types of composites were produced, both reinforced with 30 vol% of curaua fibers (CF). In the first type, only the fiber was functionalized with graphene oxide (GO), producing the GOCF/EM composite. While in the second, only the epoxy matrix (EM) was functionalized, producing the CF/GOEM composite. The objective of the work was to investigate the influence of functionalization with GO on the tensile properties of these produced composites. In comparison with the non GO-functionalized composite, as control CF/EM, the results revealed an increase in yield strength (64%), tensile strength (40%), Young's modulus (60%) and toughness (28%) of the CF/GOEM composite. The GOCF/EM composites for which the fibers were functionalized with GO also performed better than the CF/EM composite. The ANOVA and Tukey tests confirm this increase. As for ductility, within the standard deviation, no change was observed between samples functionalized by GO and those from the control. For the first time, comparing the results of the composites, it was demonstrated that a polymer matrix functionalized by GO offers superior tensile performance compared to the other types, keeping the same GO concentration in the composite. This fact is corroborated by the analysis of the corresponding fracture mechanisms. Preliminary results of composite with simultaneous functionalization of both fiber and epoxy matrix failed to present superior properties. This might be attributed to high amount of GO, which is apparently not a good reinforcement as the curaua fiber.