Engineering Science and Technology, an International Journal (Aug 2020)

Implementation of machine learning algorithms for gait recognition

  • Aybuke Kececi,
  • Armağan Yildirak,
  • Kaan Ozyazici,
  • Gulsen Ayluctarhan,
  • Onur Agbulut,
  • Ibrahim Zincir

Journal volume & issue
Vol. 23, no. 4
pp. 931 – 937

Abstract

Read online

The basis of biometric authentication is that each person's physical and behavioural characteristics can be accurately defined. Many authentication techniques were developed over the years. Human gait recognition is one of these techniques. This article explores machine learning techniques for user authentication on HugaDB database which is a human gait data collection for analysis and activity recognition (Chereshnev and Kertesz-Farkas, 2017). The activities recorded in this dataset are walking, running, sitting and standing. The data were collected with devices such as wearable accelerometer and gyroscope. In total, the data describe 18 individuals, thus we considered each individual as a different class. 10 commonly used machine learning algorithms have been implemented over the HugaDB. The proposed system achieved more than 99% in accuracy via IB1, Random Forest and Bayesian Net algorithms.

Keywords