Parasites & Vectors (Nov 2019)

First detection of the kdr mutation (L1014F) in the plague vector Xenopsylla cheopis (Siphonaptera: Pulicidae)

  • Nian Liu,
  • Xiangyang Feng,
  • Mei Li,
  • Xinghui Qiu

DOI
https://doi.org/10.1186/s13071-019-3775-2
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background The oriental rat flea, Xenopsylla cheopis, is the most efficient vector of the plague. Pyrethroid insecticides such as cypermethrin, cyhalothrin and deltamethrin have been often used to limit plague transmission via controlling the vector during outbreaks. However, this strategy is threatened by the development of insecticide resistance. Understanding the mechanisms underlying pyrethroid resistance is the prerequisite for successful flea control. Methods Partial DNA sequences of X. cheopis voltage gated sodium channel (VGSC) gene were amplified from a total of 111 individuals, collected from a natural plague epidemic foci in Baise City, Guangxi Zhuang Autonomous Region of China. These DNA fragments were sequenced. The frequency and distribution of kdr mutations were assessed in four X. cheopis populations. The origin of kdr mutations was investigated by phylogenetic and network analysis. Results The classical knockdown resistance (kdr) mutation (L1014F) was detected in four field populations at frequencies ranging between 0.021–0.241. The mutant homozygote was observed only in one of the four populations. Seven haplotypes were identified, with two of them carrying the resistance L1014F mutation. Phylogenetic tree and network analysis indicated that the L1014F allele was not singly originated. Based on polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) profiling, an easy-to-use and accurate molecular assay for screening individual fleas for the L1014F mutation was developed. Conclusions To our knowledge, this work represents the first report of the L1014F mutation in the plague vector X. cheopis. The incidence of the L1014F allele highlights the need of further studies on the phenotypic effect of this mutation in this plague vector. Early detection and monitoring of insecticide resistance is suggested in order to make effective control strategies in case of plague outbreaks in this region.

Keywords