Mining (Sep 2022)
Numerical Modelling of Blasting Fragmentation Optimization in a Copper Mine
Abstract
The blasting operation considerably influences the overall productivity of opencast mines, especially when blasting results in oversized fragments that impact the operations ranging from excavation to milling. In this work, a numerical analysis of blasting performance was implemented to optimize the blasting parameters and improve the fragmentation of the hard rock in a copper open pit mine site in Brazil. In this paper, the methodology comprised data collection, 3D numerical model construction for blasting optimization using Blo-Up software, calibration with historical data, and predictive analysis, including testing two different blast designs. With the objective of achieving a desired P80 size of the blasting fragmentation, the results indicate an optimized calibrated model with an overall error equal to 4.0% using a Swebrec distribution fitted to the model data. The optimal P80 size of the resulting muckpile was equivalent to ~0.53 m for the hard rock copper fragments, which was close to the desired P80 size.
Keywords