Advanced Science (Jun 2023)

Develop a Compact RNA Base Editor by Fusing ADAR with Engineered EcCas6e

  • Xing Wang,
  • Renxia Zhang,
  • Dong Yang,
  • Guoling Li,
  • Zhanqing Fan,
  • Hongting Du,
  • Zikang Wang,
  • Yuanhua Liu,
  • Jiajia Lin,
  • Xiaoqing Wu,
  • Linyu Shi,
  • Hui Yang,
  • Yingsi Zhou

DOI
https://doi.org/10.1002/advs.202206813
Journal volume & issue
Vol. 10, no. 17
pp. n/a – n/a

Abstract

Read online

Abstract Catalytically inactive CRISPR‐Cas13 (dCas13)‐based base editors can achieve the conversion of adenine‐to‐inosine (A‐to‐I) or cytidine‐to‐uridine (C‐to‐U) at the RNA level, however, the large size of dCas13 protein limits its in vivo applications. Here, a compact and efficient RNA base editor (ceRBE) is reported with high in vivo editing efficiency. The larger dCas13 protein is replaced with a 199‐amino acid EcCas6e protein, derived from the Class 1 CRISPR family involved in pre‐crRNA processing, and conducted optimization for toxicity and editing efficiency. The ceRBE efficiently achieves both A‐to‐I and C‐to‐U base editing with low transcriptome off‐target in HEK293T cells. The efficient repair of the DMD Q1392X mutation (68.3±10.1%) is also demonstrated in a humanized mouse model of Duchenne muscular dystrophy (DMD) after AAV delivery, achieving restoration of expression for gene products. The study supports that the compact and efficient ceRBE has great potential for treating genetic diseases.

Keywords