Molecular mechanism of infectious spleen and kidney necrosis virus in manipulating the hypoxia-inducible factor pathway to augment virus replication
Jian He,
Yang Yu,
Wenhui Liu,
Zhimin Li,
Zhang Qi,
Shaoping Weng,
Changjun Guo,
Jianguo He
Affiliations
Jian He
State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
Yang Yu
State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
Wenhui Liu
State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
Zhimin Li
State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
Zhang Qi
State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
Shaoping Weng
Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
Changjun Guo
State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
Jianguo He
State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
ABSTRACTInfectious spleen and kidney necrosis virus (ISKNV), a member of the genus Megalocytivirus in the family Iridoviridae, can infect over 50 fish species and cause significant economic losses in Asia. Our previous study showed that hypoxia triggers the hypoxia-inducible factor pathway (HIF-pathway), leading to increased replication of ISKNV through promoting the upregulation of viral hypoxic response genes like orf077r. This study delved into the molecular mechanism of how ISKNV manipulates the HIF-pathway to enhance its replication. In vitro and in vivo experiments confirmed that ISKNV infection activated the HIF-pathway, which in turn promoted ISKNV replication. These findings suggest that ISKNV actively manipulates the HIF-pathway. Co-immunoprecipitation experiments revealed that the ISKNV-encoded protein VP077R interacts with the Von Hippel−Lindau (VHL) protein at the HIF-binding region, competitively inhibiting the interaction of HIF-1α with VHL. This prevents HIF degradation and activates the HIF-pathway. Furthermore, VP077R interacts with factor-inhibiting HIF (FIH), recruiting FIH and S-phase kinase-associated protein 1 (Skp1) to form an FIH – VP077R – Skp1 complex. This complex promotes FIH protein degradation via ubiquitination, further activating the HIF-pathway. These findings indicated that ISKNV takes over the HIF-pathway by releasing two “brakes” on this pathway (VHL and FIH) via VP077R, facilitating virus replication. We speculate that hypoxia initiates a positive feedback loop between ISKNV VP077R and the HIF pathway, leading to the outbreak of ISKNV disease. This work offers valuable insights into the complex interactions between the environment, host, and virus.