Mathematics (Sep 2020)

Quantized-Feedback-Based Adaptive Event-Triggered Control of a Class of Uncertain Nonlinear Systems

  • Yun Ho Choi,
  • Sung Jin Yoo

DOI
https://doi.org/10.3390/math8091603
Journal volume & issue
Vol. 8, no. 9
p. 1603

Abstract

Read online

A quantized-feedback-based adaptive event-triggered tracking problem is investigated for strict-feedback nonlinear systems with unknown nonlinearities and external disturbances. All state variables are quantized through a uniform quantizer and the quantized states are only measurable for the control design. An approximation-based adaptive event-triggered control strategy using quantized states is presented. Compared with the existing recursive quantized feedback control results, the primary contributions of the proposed strategy are (1) to derive a quantized-states-based function approximation mechanism for compensating for unknown and unmatched nonlinearities and (2) to design a quantized-states-based event triggering law for the intermittent update of the control signal. A Lyapunov-based stability analysis is provided to conclude that closed-loop signals are uniformly ultimately bounded and there exists a minimum inter-event time for excluding Zeno behavior. In simulation results, it is shown that the proposed quantized-feedback-based event-triggered control law can be implemented with less than 10% of the total sample data of the existing quantized-feedback continuous control law.

Keywords