PLoS ONE (Jan 2012)

Specific marking of hESCs-derived hematopoietic lineage by WAS-promoter driven lentiviral vectors.

  • Pilar Muñoz,
  • Miguel G Toscano,
  • Pedro J Real,
  • Karim Benabdellah,
  • Marién Cobo,
  • Clara Bueno,
  • Verónica Ramos-Mejía,
  • Pablo Menendez,
  • Per Anderson,
  • Francisco Martín

DOI
https://doi.org/10.1371/journal.pone.0039091
Journal volume & issue
Vol. 7, no. 6
p. e39091

Abstract

Read online

Genetic manipulation of human embryonic stem cells (hESCs) is instrumental for tracing lineage commitment and to studying human development. Here we used hematopoietic-specific Wiskott-Aldrich syndrome gene (WAS)-promoter driven lentiviral vectors (LVs) to achieve highly specific gene expression in hESCs-derived hematopoietic cells. We first demonstrated that endogenous WAS gene was not expressed in undifferentiated hESCs but was evident in hemogenic progenitors (CD45(-)CD31(+)CD34(+)) and hematopoietic cells (CD45(+)). Accordingly, WAS-promoter driven LVs were unable to express the eGFP transgene in undifferentiated hESCs. eGFP(+) cells only appeared after embryoid body (EB) hematopoietic differentiation. The phenotypic analysis of the eGFP(+) cells showed marking of different subpopulations at different days of differentiation. At days 10-15, AWE LVs tag hemogenic and hematopoietic progenitors cells (CD45(-)CD31(+)CD34(dim) and CD45(+)CD31(+)CD34(dim)) emerging from hESCs and at day 22 its expression became restricted to mature hematopoietic cells (CD45(+)CD33(+)). Surprisingly, at day 10 of differentiation, the AWE vector also marked CD45(-)CD31(low/-)CD34(-) cells, a population that disappeared at later stages of differentiation. We showed that the eGFP(+)CD45(-)CD31(+) population generate 5 times more CD45(+) cells than the eGFP(-)CD45(-)CD31(+) indicating that the AWE vector was identifying a subpopulation inside the CD45(-)CD31(+) cells with higher hemogenic capacity. We also showed generation of CD45(+) cells from the eGFP(+)CD45(-)CD31(low/-)CD34(-) population but not from the eGFP(-)CD45(-)CD31(low/-)CD34(-) cells. This is, to our knowledge, the first report of a gene transfer vector which specifically labels hemogenic progenitors and hematopoietic cells emerging from hESCs. We propose the use of WAS-promoter driven LVs as a novel tool to studying human hematopoietic development.