Magnetism (Jul 2023)
Ab Initio Characterization of Magnetoelectric Coupling in Fe/BaTiO<sub>3</sub>, Fe/SrTiO<sub>3</sub>, Co/BaTiO<sub>3</sub> and Co/SrTiO<sub>3</sub> Heterostructures
Abstract
Magneto-electric coupling is a desirable property for a material used in modern electronic devices to possess due to the favorable possibilities of tuning the electronic properties using a magnetic field and vice versa. However, such materials are rare in nature. That is why the so-called superlattice approach to creating such materials is receiving so much attention. In the superlattice approach, the functionality of a combined heterostructure depends on the interacting components and can be adjusted depending on the desired property. In the present paper, we present supercells of ferromagnetic thin films of Fe and Co deposited on ferroelectric and piezoelectric substrates of BaTiO3 and SrTiO3 that exhibit magnetism, ferroelectric polarization and piezoelectric effects. Within the structures under investigation, magnetic moments can be tuned by an external electric field via the ferroelectric dipoles. We investigate the effect of magnetoelectric coupling by means of ab initio spin-polarized and spin–orbit calculations. We study the structural, electronic and magnetic properties of heterostructures, and show that electrostriction can reduce the magnitude of the magnetization vector of a ferromagnet. This approach can become the basis for controlling the properties of one of the ferromagnetic layers of a superconducting spin valve, and thus the superconducting properties of the valve.
Keywords