Electronic Journal of Biotechnology (Sep 2021)
Extracellular expression in Bacillus subtilis of a thermostable Geobacillus stearothermophilus lipase
Abstract
Background: The extracellular expression of enzymes in a secretion host such as Bacillus subtilis is a useful strategy in reducing the cost of downstream processing of industrial enzymes. Here, we present the first report of the successful extracellular expression in Bacillus subtilis WB800 of Geobacillus stearothermophilus lipase (T1.2RQ), a novel industriallydesirable thermostable lipolytic enzyme which has an excellent hydrolytic and transesterification activity. Signal peptides of α-amylase, extracellular protease, and lipase A, as well as two different promoters, were used in the secretion and expression of lipase T1.2RQ. Results: Lipase activity assay using p-nitrophenyl laurate showed that all three signal peptides directed the secretion of lipase T1.2RQ into the extracellular medium. The signal peptide of lipase A, resulted in the highest extracellular yield of 5.6 U/ml, which corresponds to a 6-fold increase over the parent Bacillus subtilis WB800 strain. SDS-PAGE and zymogram analysis confirmed that lipase T1.2RQ was correctly processed and secreted in its original size of 44 kDa. A comparison of the expression levels of lipase T1.2RQ in rich medium and minimal media showed that the enzyme was better expressed in rich media, with up to an 8-fold higher yield over minimal media. An attempt to further increase the lipase expression level by promoter optimization showed that, contrary to expectation, the optimized promoter exhibited similar expression levels as the original one, suggesting the need for the optimization of downstream factors. Conclusions: The successful extracellular secretion of lipase T1.2RQ in Bacillus subtilis represents a remarkable feat in the industrial-scale production of this enzyme.How to cite: Ridwan E, Suwanto A, Thenawidjaja M. Extracellular expression in Bacillus subtilis of a thermostable Geobacillus stearothermophilus lipase. Electron J Biotechnol 2021;53. https://doi.org/10.1016/j.ejbt.2021.07.003