BMC Urology (Dec 2022)

Effect of CTP-mediated PTEN on 5637 bladder cancer cells and the underlying molecular mechanism

  • Bei Yu,
  • Yuan Huang,
  • Yue Yang,
  • Haifeng Hu,
  • Jin Yang

DOI
https://doi.org/10.1186/s12894-022-01152-y
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Objective The aim of the present study was to explore the effect of cytoplasmic transduction peptide (CTP)-phosphatase and tensin homolog (PTEN) on the proliferation, cell cycle, apoptosis, migration and invasion of bladder cancer cells and the underlying molecular mechanism. Methods A eukaryotic expression vector, pTT5-CTP-PTEN, was constructed. The constructed vector was transfected into HEK 293-6E cells to express a fusion protein, CTP-PTEN. The fusion protein was purified. 5637 bladder cancer cells were cocultured with purified CTP-PTEN fusion protein. Target gene expression, protein expression, cell proliferation, cell cycle, apoptosis, cell invasion and cell migration were examined by reverse transcription polymerase chain reaction (RT-PCR), western blot, MTT assay, flow cytometry, Transwell assay, and cell scratch assay, respectively. Results Both PTEN and CTP-PTEN fusion protein inhibited the proliferation, cell cycle, invasion and migration of bladder cancer cells and promoted the apoptosis of bladder cancer cells. The effect of CTP-PTEN was more significant. Conclusions The fused expression of CTP and PTEN significantly increased the penetrability of the tumor suppressor gene PTEN into cancer cells. The CTP-PTEN fusion protein exhibited a significant carcinostatic effect on 5637 bladder cancer cells.

Keywords