Gels (Jun 2023)

Physical, Chemical, Barrier, and Antioxidant Properties of Pectin/Collagen Hydrogel-Based Films Enriched with <i>Melissa officinalis</i>

  • Saurabh Bhatia,
  • Ahmed Al-Harrasi,
  • Aysha Salim Alhadhrami,
  • Yasir Abbas Shah,
  • Sabna Kotta,
  • Javed Iqbal,
  • Md Khalid Anwer,
  • Anjana Karunakaran Nair,
  • Esra Koca,
  • Levent Yurdaer Aydemir

DOI
https://doi.org/10.3390/gels9070511
Journal volume & issue
Vol. 9, no. 7
p. 511

Abstract

Read online

The essential oil extracted from Melissa officinalis (MOEO) exhibits a wide range of therapeutic properties, including antioxidant, antibacterial, and antifungal activities. The current research aimed to analyze the mechanical, barrier, chemical, and antioxidant properties of pectin and collagen-based films. Hydrogel-based films loaded with varying concentrations of MOEO (0.1%, 0.15%, and 0.2%) were prepared by solvent-casting method, and their physicochemical as well as antioxidant properties were examined. GC-MS analysis revealed the presence of major components in MOEO such as 2,6-octadienal, 3,7-dimethyl, citral, caryophyllene, geranyl acetate, caryophyllene oxide, citronellal, and linalool. Fourier transform infrared (FTIR) results revealed the interaction between components of the essential oil and polymer matrix. Scanning electron microscopy (SEM) revealed that films loaded with the highest concentration (0.2%) of MOEO showed more homogeneous structure with fewer particles, cracks, and pores as compared to control film sample. MOEO-incorporated films exhibited higher elongation at break (EAB) (30.24–36.29%) and thickness (0.068–0.073 mm); however, they displayed lower tensile strength (TS) (3.48–1.25 MPa) and transparency (87.30–82.80%). MOEO-loaded films demonstrated superior barrier properties against water vapors. According to the results, the incorporation of MOEO into pectin–collagen composite hydrogel-based films resulted in higher antioxidant properties, indicating that MOEO has the potential to be used in active food packaging material for potential applications.

Keywords