Science and Technology of Advanced Materials (Jan 2011)
Gate bias-dependent junction characteristics of silicon nanowires suspended between polysilicon electrodes
Abstract
Realistic integration of 1D materials into future nanodevices is limited by the lack of a manipulation process that allows a large number of nanowires to be arranged into an integrated circuit. In this work, we have grown Si nanowire bridges using a thin-film catalyst in a batch process at 200 °C and characterized the produced devices consisting of a p+-Si contact electrode, a suspended Si nanochannel, and a polysilicon contact electrode. Both the electrodes and connecting lines are made of Si-based materials by conventional low-pressure chemical vapor deposition. The results indicate that these devices can act as gate-controllable Schottky diodes in integrated nanocircuits.