Scientific Reports (Sep 2024)

The prognostic significance of androgen receptor expression in gliomas

  • Chi Zhang,
  • Nan Zhao,
  • Rubayat Khan,
  • Ming-yang Hung,
  • Chi Zhang,
  • Shuo Wang,
  • Tony J. C. Wang,
  • Chi Lin

DOI
https://doi.org/10.1038/s41598-024-72284-4
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Androgen receptor (AR) overexpression has been identified in gliomas and its stem cells, suggesting that AR plays an important role in tumor carcinogenesis. The prognostic significance of AR overexpression in gliomas remains unknown. AR mRNA expression in gliomas and relevant clinical data were obtained from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. AR expression levels were compared across gliomas of different histopathologic grades and molecular subtypes. Kaplan–Meier analyses in patients with different AR expression levels were investigated for the potential prognostic values of AR. Compared with normal brain tissue, gliomas show significantly higher AR mRNA expression (p < 0.01). AR mRNA expression was more prominent in higher grade disease and in worse prognostic molecular subtypes (p < 0.01). AR protein is more abundant in glioblastoma than in lower grade gliomas (LGG) (grade 2/3) (p < 0.0001). This is corroborated by a linear association between AR mRNA and protein expression (r = 0.65). In LGG, both higher AR mRNA and protein expression was associated with significantly worse overall survival (OS). Five-year OS for LGG patients with high versus low AR expression were 59.1% and 73.3%, respectively (p < 0.0001). AR expression is not prognostic for OS within glioblastoma patients. Gender was not associated with AR expression or prognosis. Higher AR expression levels are associated with higher grade disease and histopathologic features predicting poorer prognosis in lower grade gliomas. Higher gene expression in LGG patients is correlated with poor prognosis but not in the glioblastoma cohort suggesting saturated expression/functions of AR in glioblastoma.

Keywords