Molecules (May 2023)
Determination of Multiple Neurotransmitters through LC-MS/MS to Confirm the Therapeutic Effects of <i>Althaea rosea</i> Flower on TTX-Intoxicated Rats
Abstract
Tetrodotoxin (TTX) inhibits neurotransmission in animals, and there is no specific antidote. In clinical practice in China, Althaea rosea (A. rosea flower) extract has been used to treat TTX poisoning. In this work, the efficacy of the ethyl acetate fraction extract of A. rosea flower in treating TTX poisoning in rats was investigated. A high-performance liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was developed to determine nine neurotransmitters in rat brain tissue, including γ-aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), noradrenaline (NE), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindole-3-acetic acid (5-HIAA), epinephrine (E), and tyramine (Tyn). The detoxifying effect of A. rosea flower was verified by comparing the changes in neurotransmitters’ content in brain tissue before and after poisoning in rats. The assay was performed in multiple reaction monitoring mode. The quantification method was performed by plotting an internal-standard working curve with good linearity (R2 > 0.9941) and sensitivity. Analyte recoveries were 94.04–107.53% (RSD A. rosea flower to prove that the ethyl acetate extract of A. rosea flower had a therapeutic effect on TTX poisoning. The work provided new ideas for studies on TTX detoxification.
Keywords