Atmospheric Chemistry and Physics (Apr 2023)

Foreign emissions exacerbate PM<sub>2.5</sub> pollution in China through nitrate chemistry

  • J.-W. Xu,
  • J. Lin,
  • G. Luo,
  • J. Adeniran,
  • H. Kong

DOI
https://doi.org/10.5194/acp-23-4149-2023
Journal volume & issue
Vol. 23
pp. 4149 – 4163

Abstract

Read online

Fine particulate matter (PM2.5) pollution is a severe problem in China. Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China's domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected, partly due to the perception that the short lifetime of PM2.5 (a few days) does not allow long-distance transport. Here we explore the role of foreign anthropogenic emissions in Chinese PM2.5 pollution in 2015 using the GEOS-Chem chemical transport model. We validate the model simulations with a comprehensive set of observations of PM2.5 and its composition, including sulfate, nitrate, ammonium, black carbon, and primary organic aerosols, over China and its surrounding regions. We find that 8 % of PM2.5 (5 µg m−3) and 19 % of nitrate (2.6 µg m−3) over eastern China in 2015 was contributed by foreign anthropogenic emissions. The contributions were the highest in January (6.9 µg m−3 PM2.5, with 68 % nitrate) and the lowest in July (2.7 µg m−3 PM2.5, with 11 % nitrate). Yet, only 30 % of such foreign contributions in January were through direct atmospheric transport. The majority (70 %) were instead through chemical interactions between foreign-transported aerosol precursors and China's domestic emissions of pollutants. Specifically, the transport of non-methane volatile organic compounds (NMVOCs) from foreign countries enhanced the atmospheric oxidizing capacity and facilitated the oxidation of Chinese nitrogen oxides (NOx) to form nitric acid (HNO3) over eastern China. The abundance of Chinese ammonia (NH3) further partitioned nearly all HNO3 gas to particulate nitrate, leading to considerable foreign contributions of nitrate and PM2.5 to eastern China. Over southwestern China, foreign anthropogenic emissions contributed 4.9 µg m−3 PM2.5 concentrations (18 % of total PM2.5 mass) to Yunnan Province, with 37 % as organics and 27 % as sulfate. Our findings suggest that foreign anthropogenic emissions play an important role in Chinese PM2.5 pollution because of direct aerosol transport and, more importantly, chemical interactions between transported pollutants and China's local emissions. Thus, foreign emission reductions will be very beneficial for improving Chinese air quality.