Rootstock Breeding of Stone Fruits Under Modern Cultivation Regime: Current Status and Perspectives
Juanjuan Ling,
Wenjian Yu,
Li Yang,
Junhuan Zhang,
Fengchao Jiang,
Meiling Zhang,
Yuzhu Wang,
Haoyuan Sun
Affiliations
Juanjuan Ling
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China
Wenjian Yu
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China
Li Yang
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China
Junhuan Zhang
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China
Fengchao Jiang
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China
Meiling Zhang
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China
Yuzhu Wang
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China
Haoyuan Sun
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China
Stone fruits (Prunus spp.) occupy a pivotal position in global fruit production due to their significant nutritional profile and distinctive organoleptic characteristics. Contemporary orchard systems are undergoing transformation through innovative cultivation approaches, notably high-density dwarfing systems, greenhouse cultivation, agri-tech integration, and simplified management. As a crucial agronomic component in modern stone fruit cultivation, rootstock systems confer multi-benefits including enhanced environmental resilience, improved scion productivity, superior fruit quality, controlled vigor, and dwarfing capacity. While the majority of European apple orchards have transitioned to dwarfing rootstock systems, achieving substantial gains in productivity and profitability, stone fruit cultivation lags significantly due to the key gaps in prunus rootstock development, including genetic complexity, extended evaluation cycles, clonal propagation barriers, and limited research programs. Urgent innovation is required to address these challenges in rootstock breeding to meet the demand of sustainable stone fruit production. This review systematically examines strategic breeding objectives and innovative molecular methodologies in prunus rootstock development, with particular emphasis on marker-assisted selection and genomic prediction technologies. We provide a comprehensive synthesis of breeding achievements across major commercial rootstock cultivars, while proposing forward-looking research strategies incorporating CRISPR-based genome editing and multi-omics approaches. The synthesized insights establish a theoretical pathway for advancing rootstock genetic improvement and sustainable orchard management practices in stone fruit cultivation systems.