International Journal of Genomics (Jan 2024)

Pangenome Analysis of Helicobacter pylori Isolates from Selected Areas of Africa Indicated Diverse Antibiotic Resistance and Virulence Genes

  • Biigba Yakubu,
  • Edwin Moses Appiah,
  • Andrews Frimpong Adu

DOI
https://doi.org/10.1155/2024/5536117
Journal volume & issue
Vol. 2024

Abstract

Read online

The challenge facing Helicobacter pylori (H. pylori) infection management in some parts of Africa is the evolution of drug-resistant species, the lack of gold standard in diagnostic methods, and the ineffectiveness of current vaccines against the bacteria. It is being established that even though clinical consequences linked to the bacteria vary geographically, there is rather a generic approach to treatment. This situation has remained problematic in the successful fight against the bacteria in parts of Africa. As a result, this study compared the genomes of selected H. pylori isolates from selected areas of Africa and evaluated their virulence and antibiotic drug resistance, those that are highly pathogenic and are associated with specific clinical outcomes and those that are less virulent and rarely associated with clinical outcomes. 146 genomes of H. pylori isolated from selected locations of Africa were sampled, and bioinformatic tools such as Abricate, CARD RGI, MLST, Prokka, Roary, Phandango, Google Sheets, and iTOLS were used to compare the isolates and their antibiotic resistance or susceptibility. Over 20 k virulence and AMR genes were observed. About 95% of the isolates were genetically diverse, 90% of the isolates harbored shell genes, and 50% harbored cloud and core genes. Some isolates did not retain the cagA and vacA genes. Clarithromycin, metronidazole, amoxicillin, and tinidazole were resistant to most AMR genes (vacA, cagA, oip, and bab). Conclusion. This study found both virulence and AMR genes in all H. pylori strains in all the selected geographies around Africa with differing quantities. MLST, Pangenome, and ORF analyses showed disparities among the isolates. This in general could imply diversities in terms of genetics, evolution, and protein production. Therefore, generic administration of antibiotics such as clarithromycin, amoxicillin, and erythromycin as treatment methods in the African subregion could be contributing to the spread of the bacterium’s antibiotic resistance.