Ascl1 Balances Neuronal versus Ependymal Fate in the Spinal Cord Central Canal
Daniela J. Di Bella,
Abel L. Carcagno,
M. Lucía Bartolomeu,
M. Belén Pardi,
Heiko Löhr,
Nicole Siegel,
Matthias Hammerschmidt,
Antonia Marín-Burgin,
Guillermo M. Lanuza
Affiliations
Daniela J. Di Bella
Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires 1405, Argentina
Abel L. Carcagno
Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires 1405, Argentina
M. Lucía Bartolomeu
Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires 1405, Argentina
M. Belén Pardi
Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society (IBioBA-CONICET), Buenos Aires, Argentina
Heiko Löhr
Institute of Zoology-Developmental Biology, Center for Molecular Medicine Cologne, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
Nicole Siegel
Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires 1405, Argentina
Matthias Hammerschmidt
Institute of Zoology-Developmental Biology, Center for Molecular Medicine Cologne, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
Antonia Marín-Burgin
Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society (IBioBA-CONICET), Buenos Aires, Argentina
Guillermo M. Lanuza
Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires 1405, Argentina; Corresponding author
Summary: Generation of neuronal types at the right time, location, and number is essential for building a functional nervous system. Significant progress has been reached in understanding the mechanisms that govern neuronal diversity. Cerebrospinal fluid-contacting neurons (CSF-cNs), an intriguing spinal cord central canal population, are produced during advanced developmental stages, simultaneous with glial and ependymal cells. It is unknown how CSF-cNs are specified after the neurogenesis-to-gliogenesis switch. Here, we identify delayed Ascl1 expression in mouse spinal progenitors during the gliogenic phase as key in CSF-cN differentiation. With fate mappings and time-controlled deletions, we demonstrate that CSF-cNs derive from Ascl1-expressing cells and that Ascl1 triggers late neurogenesis in the amniote spinal cord. Ascl1 abrogation transforms prospective CSF-cN progenitors into ependymocytes. These results demonstrate that late spinal progenitors have the potential to produce neurons and that Ascl1 initiates CSF-cN differentiation, controlling the precise neuronal and nonneuronal composition of the spinal central canal. : Cerebrospinal fluid-contacting neurons (CSF-cNs) are produced during the gliogenic phase of spinal cord development. Di Bella et al. demonstrate that, in amniotes, CSF-cNs arise from late Ascl1-expressing cells, and this transcription factor controls their development at the expense of ependymal cells. Thus, Ascl1 confers neurogenic potential to late spinal progenitors. Keywords: late neurogenesis, transcription factor, spinal cord, central canal, CSF-contacting neurons, CSF-cN, Ascl1, ependymocytes, neural progenitor, neuron specification