Advances in Meteorology (Jan 2015)

Atmospheric Circulation Regimes in a Nonlinear Quasi-Geostrophic Model

  • Henriette Labsch,
  • Dörthe Handorf,
  • Klaus Dethloff,
  • Michael V. Kurgansky

DOI
https://doi.org/10.1155/2015/629429
Journal volume & issue
Vol. 2015

Abstract

Read online

Atmospheric low-frequency variability and circulation regime behavior are investigated in the context of a quasi-geostrophic (QG) three-level T63 model of the wintertime atmospheric circulation over the Northern Hemisphere (NH). The model generates strong interannual and decadal variability, with the domination of the annular mode of variability. It successfully reproduces a satisfactory model climatology and the most important atmospheric circulation regimes. The positive phase of the Arctic Oscillation is a robust feature of the quasi-geostrophic T63 model. The model results based on QG dynamics underlie atmospheric regime behavior in the extratropical NH and suggest that nonlinear internal processes deliver significant contribution to the atmospheric climate variability on interannual and decadal timescales.