Energies (Jul 2024)

Simulation of a Continuous Pyrolysis Reactor for a Heat Self-Sufficient Process and Liquid Fuel Production

  • Antonio Chavando,
  • Valter Bruno Silva,
  • Luís A. C. Tarelho,
  • João Sousa Cardoso,
  • Daniela Eusebio

DOI
https://doi.org/10.3390/en17143526
Journal volume & issue
Vol. 17, no. 14
p. 3526

Abstract

Read online

This study investigates the potential of utilizing pyrolysis byproducts, including char and non-condensable gases, as an energy source to promote autothermal pyrolysis. A total of six pyrolysis experiments were conducted at three distinct cracking temperatures, namely, 450 °C, 500 °C, and 550 °C. The experiments utilized two types of biomasses, i.e., 100% pine chips and 75% pine chips mixed with 25% refuse-derived fuels (RDF). The findings from the experiments were subsequently incorporated into a process simulation conducted on Aspen Plus for an energy balance and a techno-economic analysis. The results of the experiments revealed that the energy produced by the byproducts utilizing only pine chips is 1.453 kW/kg, which is enough to fulfill the energy demand of the pyrolysis reactor (1.298 kW/kg). However, when 25% of RDF is added, the energy demand of the reactor decreases to 1.220 kW/kg, and the produced energy increases to 1.750 kW/kg. Furthermore, adding RDF increases bio-oil’s lower heating value (LHV). The techno-economic study proposed three scenarios: optimistic, conservative, and tragic. The optimistic has a payback period (PBP) of 7.5 years and a positive net present value (NPV). However, the other two scenarios were unfavorable, resulting in unfeasibility.

Keywords