A continuously variable transmission can improve the energy efficiency of actuators with rotary output by providing an optimum transmission ratio. A continuously variable transmission based on circumferentially arranged disks (CAD CVT) is a new type of CVT that is highly beneficial for applications requiring large torques, like heavy road transport. However, its major drawback is that its efficiency drops in the low torque region. To overcome this problem, the current paper proposes an improved mechanical design in which the force on traction disks is changed according to the instantaneous torque requirement, thus resulting in improved efficiency in low torque regions. Furthermore, a hydraulic-actuation-based control system has been designed to ensure the optimum control of the improved mechanical design. The improved mechanical design of the CAD CVT is named CAD CVT-II, which is highly beneficial for variable torque applications such as road transport and wind turbines.