Biotechnology for Biofuels and Bioproducts (Jun 2024)

Customizable and stable multilocus chromosomal integration: a novel glucose-dependent selection system in Aureobasidium spp.

  • Shuo Zhang,
  • Tao Ma,
  • Fu-Hui Zheng,
  • Muhammad Aslam,
  • Yu-Jie Wang,
  • Zhen-Ming Chi,
  • Guang-Lei Liu

DOI
https://doi.org/10.1186/s13068-024-02531-3
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Non-conventional yeasts hold significant potential as biorefinery cell factories for microbial bioproduction. Currently, gene editing systems used for these yeasts rely on antibiotic and auxotrophic selection mechanisms. However, the drawbacks of antibiotics, including high costs, environmental concerns, and the dissemination of resistance genes, make them unsuitable for large-scale industrial fermentation. For auxotrophic selection system, the engineered strains harboring auxotrophic marker genes are typically supplemented with complex nutrient-rich components instead of precisely defined synthetic media in large-scale industrial fermentations, thus lack selection pressure to ensure the stability of heterologous metabolic pathways. Therefore, it is a critical to explore alternative selection systems that can be adapted for large-scale industrial fermentation. Results Here, a novel glucose-dependent selection system was developed in a high pullulan-producing non-conventional strain A. melanogenum P16. The system comprised a glucose-deficient chassis cell Δpfk obtained through the knockout of the phosphofructokinase gene (PFK) and a series of chromosomal integration plasmids carrying a selection marker PFK controlled by different strength promoters. Utilizing the green fluorescent protein gene (GFP) as a reporter gene, this system achieved a 100% positive rate of transformation, and the chromosomal integration numbers of GFP showed an inverse relationship with promoter strength, with a customizable copy number ranging from 2 to 54. More importantly, the chromosomal integration numbers of target genes remained stable during successive inoculation and fermentation process, facilitated simply by using glucose as a cost-effective and environmental-friendly selectable molecule to maintain a constant and rigorous screening pressure. Moreover, this glucose-dependent selection system exhibited no significant effect on cell growth and product synthesis, and the glucose-deficient related selectable marker PFK has universal application potential in non-conventional yeasts. Conclusion Here, we have developed a novel glucose-dependent selection system to achieve customizable and stable multilocus chromosomal integration of target genes. Therefore, this study presents a promising new tool for genetic manipulation and strain enhancement in non-conventional yeasts, particularly tailored for industrial fermentation applications.

Keywords