Symmetry (Dec 2018)

An Intelligent Approach for Handling Complexity by Migrating from Conventional Databases to Big Data

  • Shabana Ramzan,
  • Imran Sarwar Bajwa,
  • Rafaqut Kazmi

DOI
https://doi.org/10.3390/sym10120698
Journal volume & issue
Vol. 10, no. 12
p. 698

Abstract

Read online

Handling complexity in the data of information systems has emerged into a serious challenge in recent times. The typical relational databases have limited ability to manage the discrete and heterogenous nature of modern data. Additionally, the complexity of data in relational databases is so high that the efficient retrieval of information has become a bottleneck in traditional information systems. On the side, Big Data has emerged into a decent solution for heterogenous and complex data (structured, semi-structured and unstructured data) by providing architectural support to handle complex data and by providing a tool-kit for efficient analysis of complex data. For the organizations that are sticking to relational databases and are facing the challenge of handling complex data, they need to migrate their data to a Big Data solution to get benefits such as horizontal scalability, real-time interaction, handling high volume data, etc. However, such migration from relational databases to Big Data is in itself a challenge due to the complexity of data. In this paper, we introduce a novel approach that handles complexity of automatic transformation of existing relational database (MySQL) into a Big data solution (Oracle NoSQL). The used approach supports a bi-fold transformation (schema-to-schema and data-to-data) to minimize the complexity of data and to allow improved analysis of data. A software prototype for this transformation is also developed as a proof of concept. The results of the experiments show the correctness of our transformations that outperform the other similar approaches.

Keywords