Advances in Nonlinear Analysis (May 2024)
Normalized solutions of NLS equations with mixed nonlocal nonlinearities
Abstract
We study the existence and nonexistence of normalized solutions for the nonlinear Schrödinger equation with mixed nonlocal nonlinearities: −Δu=λu+μ(Iα∗∣u∣p)∣u∣p−2u+(Iα∗∣u∣q)∣u∣q−2uinRN,∫RN∣u∣2dx=c,\left\{\begin{array}{ll}-\Delta u=\lambda u+\mu \left({I}_{\alpha }\ast {| u| }^{p}){| u| }^{p-2}u+\left({I}_{\alpha }\ast {| u| }^{q}){| u| }^{q-2}u& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ \mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}{| u| }^{2}{\rm{d}}x=c,& \end{array}\right. where N≥1,N+αN≤p<q≤N+α+2NN\ge 1,\frac{N+\alpha }{N}\le p\lt q\le \frac{N+\alpha +2}{N}, the parameter μ∈R\mu \in {\mathbb{R}} and λ\lambda is a Lagrange multiplier. Furthermore, we prove the relationship between minimizers and ground state solutions under the Nehari manifold, which seems to be the first result in the nonlocal context.
Keywords