Acta Botânica Brasílica (Jun 2014)
Using AFLP-RGA markers to assess genetic diversity among pigeon pea (Cajanus cajan) genotypes in relation to major diseases
Abstract
Resistance gene analog (RGA)-anchored amplified fragment length polymorphism (AFLP-RGA) marker system was used in order to evaluate genetic relationships among 22 pigeon pea genotypes with varied responses to Fusarium wilt and sterility mosaic disease. Five AFLP-RGA primer combinations (E-CAG/wlrk-S, M-GTG/wlrk-S, M-GTG/wlrk-AS, E-CAT/S1-INV and E-CAG/wlrk-AS) produced 173 scorable fragments, of which 157 (90.7%) were polymorphic, with an average of 31.4 fragments per primer combination. The polymorphism rates obtained with the five primers were 83.3%, 92.0%, 92.3%, 93.0% and 93.1%, respectively. Mean polymorphic information content (PIC) values ranged from 0.24 (with E-CAT/S1-INV) to 0.30 (with E-CAG/wlrk-AS), whereas resolving power (RP) values varied from 11.06 (with M-GTG/wlrk-S) to 25.51 (with E-CAG/wlrk-AS) and marker index (MI) values ranged from 5.98 (with M-GTG/wlrk-S) to 12.30 (with E-CAG/wlrk-AS). We identified a positive correlation between MI and RP (r²=0.98, p<0.05), stronger that that observed for the comparison between PIC and RP (r²=0.88, p<0.05). That implies that either MI or RP is the best parameter for selecting more informative AFLP-RGA primer combinations. The Jaccard coefficient ranged from 0.07 to 0.72, suggesting a broad genetic base in the genotypes studied. A neighbor-joining tree, based on the unweighted pair group method with arithmetic mean, distinguished cultivated species from wild species. The grouping of resistant genotypes in different clusters would help in the selection of suitable donors for resistance breeding in pigeon pea.
Keywords