Известия высших учебных заведений. Поволжский регион: Физико-математические науки (Mar 2020)
THE NUMERICAL STUDY OF THE EFFECT OF DISPERSED PHASE PROPERTIES ON THE PARAMETERS OF SHOCK WAVE REFLECTION FROM A SOLID SURFACE IN A MONOAND POLYDISPERSE GAS SUSPENSION
Abstract
Background. The processes associated with the dynamics of multiphase media are found both in natural nature and in industrial technologies. The aim of this work is to study the influence of the dispersed component parameters on the reflection of a shock wave from a solid surface in a mono- and polydisperse dusty medium. Materials and methods. To describe the dynamics of the carrier medium, a twodimensional system of Navier-Stokes equations is used, written with allowance for interphase force interaction and interphase heat transfer. To describe the dynamics of the dispersed phase, for each of its fractions, a system of equations is solved that includes the continuity equation for the “average density” of the fraction, the conservation equation for the spatial components of the momentum, and the conservation equation for the thermal energy of the gas suspension fraction. Results. In this work, shock-wave processes in dusty media with a uniform composition of a dispersed phase and in dusty media with a dispersed phase are numerically modeled, the particles of which differed in the size and density of the material. The processes of motion and reflection of shock waves from a solid wall were studied depending on the parameters of the dispersed phase. The regularities of the effect of particle size on the intensity of the reflected shock wave in mono and polydisperse gas suspensions are determined. Conclusions. The influence of the physical density of the dispersed phase and particle size on the characteristics of the shock wave reflected from the solid surface is revealed. The patterns revealed for a monodisperse gas suspension were generalized to the case of a dusty medium, the solid phase of which consists of several components with different physical properties of dispersed particles.
Keywords