Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil
Kauê Santana da Costa
Laboratório de Simulação Computacional, Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil
Cláudio Nahum Alves
Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil
Jerônimo Lameira
Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil
Repellents are compounds that prevent direct contact between the hosts and the arthropods that are vectors of diseases. Several studies have described the repellent activities of natural compounds obtained from essential oils. In addition, these chemical constituents have been pointed out as alternatives to conventional synthetic repellents due to their interesting residual protection and low toxicity to the environment. However, these compounds have been reported with short shelf life, in part, due to their volatile nature. Nanoencapsulation provides protection, stability, conservation, and controlled release for several compounds. Here, we review the most commonly used polymeric/lipid nanosystems applied in the encapsulation of small organic molecules obtained from essential oils that possess repellent activity, and we also explore the theoretical aspects related to the intermolecular interactions, thermal stability, and controlled release of the nanoencapsulated bioactive compounds.