Ecotoxicology and Environmental Safety (Jan 2022)

Derivation of predicted no effect concentration and ecological risk assessment of polycyclic musks tonalide and galaxolide in sediment

  • Wenwen Li,
  • Liping Wang,
  • Xiaonan Wang,
  • Ruizhi Liu

Journal volume & issue
Vol. 229
p. 113093

Abstract

Read online

Polycyclic musks (PMs) have drawn increased attention in recent years because of their persistence, bioaccumulation and toxicity. As two typical PMs contaminants, tonalide (AHTN) and galaxolide (HHCB) are widely detected in sediment worldwide. Acute and chronic toxicity data of AHTN and HHCB to freshwater and seawater organisms in water and sediments are collected and screened. The predicted no effect concentrations (PNECsediment) for AHTN and HHCB is derived according to the equilibrium partitioning method recommended by the EU technical guidance document (TGD) and the species sensitivity distribution (SSD) method based on the measured sediment toxicity data. The concentration levels of AHTN and HHCB are investigated and evaluated in freshwater and seawater sediments. Results show the difference between native and non-native freshwater species is not statistically significant. AHTN is more toxic to freshwater and seawater organisms than HHCB, and seawater organisms are more sensitive to 2 musks than freshwater organisms. The chronic PNECsediment values of AHTN and HHCB are 194.48 and 416.47 ng/g in freshwater sediment, 88.93 and 128.34 ng/g in seawater sediment respectively. The AHTN and HHCB linear correlation analysis exhibited a strong positive linear correlation in both domestic (R2=0.9054) and foreign (R2 = 0.9645) sediment. Preliminary risk assessment shows that the risks posed by AHTN and HHCB in sediment based on individual or combined concentrations of two musks are at medium to high levels in some regions. Further risk assessment results indicate that, for HHCB,1.72% of foreign freshwater sediment may pose an ecological risk to 5% species; for AHTN, 8.06% of foreign freshwater sediment and 1.02% of domestic freshwater sediment may pose an ecological risk to 5% species, and 5.86% of seawater sediment may pose an ecological risk to 5% species. The above results indicate that there are some negligible risks in domestic and foreign sediments posed by these two musks, we should continue to pay attention to the toxic effects and pollution level of both musks in environment.

Keywords