Antibiotics (Dec 2022)

Role of PatAB Transporter in Efflux of Levofloxacin in <i>Streptococcus pneumoniae</i>

  • Mónica Amblar,
  • Ángel Zaballos,
  • Adela G de la Campa

DOI
https://doi.org/10.3390/antibiotics11121837
Journal volume & issue
Vol. 11, no. 12
p. 1837

Abstract

Read online

PatAB is an ABC bacterial transporter that facilitates the export of antibiotics and dyes. The overexpression of patAB genes conferring efflux-mediated fluoroquinolone resistance has been observed in several laboratory strains and clinical isolates of Streptococcus pneumoniae. Using transformation and whole-genome sequencing, we characterized the fluoroquinolone-resistance mechanism of one S. pneumoniae clinical isolate without mutations in the DNA topoisomerase genes. We identified the PatAB fluoroquinolone efflux-pump as the mechanism conferring a low-level resistance to ciprofloxacin (8 µg/mL) and levofloxacin (4 µg/mL). Genetic transformation experiments with different amplimers revealed that the entire patA plus the 5’-terminus of patB are required for levofloxacin–efflux. By contrast, only the upstream region of the patAB operon, plus the region coding the N-terminus of PatA containing the G39D, T43A, V48A and D100N amino acid changes, are sufficient to confer a ciprofloxacin–efflux phenotype, thus suggesting differences between fluoroquinolones in their binding and/or translocation pathways. In addition, we identified a novel single mutation responsible for the constitutive and ciprofloxacin-inducible upregulation of patAB. This mutation is predicted to destabilize the putative rho-independent transcriptional terminator located upstream of patA, increasing transcription of downstream genes. This is the first report demonstrating the role of the PatAB transporter in levofloxacin–efflux in a pneumoccocal clinical isolate.

Keywords