Journal of Taibah University for Science (Jan 2020)

The impacts of varying magnetic field and free convection heat transfer on an Eyring–Powell fluid flow with peristalsis: VIM solution

  • Y. A. S. El-Masry,
  • Y. Abd Elmaboud,
  • M. A. Abdel-Sattar

DOI
https://doi.org/10.1080/16583655.2019.1698277
Journal volume & issue
Vol. 14, no. 1
pp. 19 – 30

Abstract

Read online

A mathematical model of a non-Newtonian fluid (Eyring–Powell fluid) flow with peristalsis under the effect of varying magnetic field and free convection heat transfer has been discussed. Most of the previous attempts of peristaltic flow problems for a non-Newtonian fluid have been solved by using the perturbation technique for a small non-Newtonian parameter, which gives some limits for the results. To avoid such restriction, the variational iteration method (VIM) is applied to solve the current model. A code is established by using the symbolic software MATHEMATICA to get the successive solutions. Semi-analytical solutions are found by VIM for the velocity, heat transfer, pressure gradient and stream function, which include Eyring–Powell fluid parameters. Moreover, a comparison between VIM and numerical solutions is discussed. The obtained results show that the variation of the heat transfer for the Newtonian fluid is large compared with the Eyring–Powell fluid. In addition, it is noteworthy that the peristaltic transport overcomes on Lorentz force nearby the peristaltic walls.

Keywords