Investigation of high-entropy alloys in form of bulk samples as well as thin films is currently one of the fastest growing areas in the study of metal alloys. In this paper, a bulk sample of FeNiCoCuCr high-entropy alloy ingot with equimolar composition is prepared by the laboratory arc melting method under an argon atmosphere and used as a source target for deposition of thin films on Si (111) single-crystalline substrates using a novel ionized jet deposition method. The morphology, chemical composition, and real crystalline structure of the target and the prepared layers were characterized by scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, and X-ray and neutron diffraction methods. Transfer coefficients characterizing the mass transport between the target and the grown film were calculated for each of the constituting metallic elements as the ratio of the atomic concentration found in the prepared film divided by its concentration in the deposition target. The dependence of the obtained transfer coefficients on the IJD acceleration voltage is discussed with respect to the main physical and geometric parameters of the deposition process, and their correlations with the cohesive energy of the elements forming the HEA are proposed.