Genetics and Molecular Biology (Jan 2007)

Purine and pyrimidine nucleotide metabolism in Mollicutes

  • Cristiano Valim Bizarro,
  • Desirée Cigaran Schuck

DOI
https://doi.org/10.1590/S1415-47572007000200005
Journal volume & issue
Vol. 30, no. 1
pp. 190 – 201

Abstract

Read online

Several mollicute genome projects are underway, offering unique opportunities to study genes and metabolic pathways on a genome-wide scale. Here, we have analyzed the conservation and diversity of purine and pyrimidine metabolism in mycoplasmas. An evaluation of discrepancies between genomic analysis and enzymatic data revealed interesting aspects about these organisms. We found important examples in which enzyme activity was reported without the annotation of a corresponding gene. An interesting example concerns phosphopentomutase. In Mollicutes, we have identified CDSs orthologous to sequences recently identified as new phosphopentomutases in archaeobacteria that are structurally related to phosphomannomutases. It is suggested that these sequences could replace the function of phosphopentomutases in mollicutes lacking the canonical phosphopentomutase gene (deoB). Also, the activity of 5'-nucleotidase was reported in mollicutes that do not possess any CDS related to ushA. Hypothetical proteins exhibiting domains similar to newly characterized 5' nucleotidases in Escherichia coli are proposed as possible CDSs related to this enzymatic activity in Mollicutes. Based on our analysis, the reductive genome evolution of Mollicutes does not appear to result in a minimum set of genes nor a minimum set of metabolic functions shared by all mollicute species.

Keywords