Ultrasonics Sonochemistry (May 2022)
Sonosynthesis of nanobiotics with antimicrobial and antioxidant properties
Abstract
Transforming small-molecule antibiotics into carrier-free nanoantibiotics represents an opportunity for developing new multifunctional therapeutic agents. In this study, we demonstrate that acoustic cavitation produced by high-frequency ultrasound transforms the antibiotic doxycycline into carrier-free nanobiotics. Upon sonication for 1 h at 10–15 W cm−3, doxycycline molecules underwent hydroxylation and dimerization processes to ultimately self-assemble into nanoparticles of ∼100–200 nm in size. Micrometer sized particles can be also obtained by increasing the acoustic power to 20 W cm−3. The nanodrugs exhibited antioxidant properties, along with antimicrobial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacterial strains. Our results highlight the feasibility of the ultrasound-based approach for engineering drug molecules into a nanosized formulation with controlled and multiple bio-functionalities.