Cell Transplantation (Apr 2016)
Induction of Endothelial Phenotype from Wharton's Jelly-Derived MSCs and Comparison of Their Vasoprotective and Neuroprotective Potential with Primary WJ-MSCs in CA1 Hippocampal Region Ex Vivo
Abstract
Ischemic stroke results in violent impairment of tissue homeostasis leading to severe perturbation within the neurovascular unit (NVU) during the recovery period. The aim of this study was to assess the potential of mesenchymal stem cells (MSCs) originating from Wharton's jelly (WJ) to differentiate into functionally competent cells of endothelial lineage (WJ-EPCs). The protective effect(s) of either primary WJ-MSCs or induced WJ-EPCs was investigated and compared after oxygen–glucose deprivation (OGD) of hippocampal organotypic slices (OHC) in the indirect coculture model. WJ-MSCs, primed in EGM-2 (Lonza commercial medium) under 5% O 2 , acquired cobblestone endothelial-like morphology, formed capillary-like structures and actively took up DiI-Ac-LDL. Both cell types (WJ-MSCs and WJ-EPCs) were positive for CD73, CD90, CD105, VEGFR-2, and VEGF, but only endothelial-like culture expressed vWF and PECAM-1 markers at significant levels. In the presence of either WJ-MSCs or WJ-EPCs in the compartment below OGD-injured slices, cell death and vascular atrophy in the hypoxia-sensitive CA1 region were substantially decreased. This suggests that a paracrine mechanism may mediate WJ-MSC- and WJ-EPC-dependent protection. Thus, finally, we estimated secretion of the neuro/angio/immunomodulatory molecules IL-6, TGF-β1, and VEGF by these cell cultures. We have found that release of TGF-β1 and IL-6 was TLR ligand [LPS and Poly(I:C)] concentration dependent and stronger in WJ-EPC than WJ-MSC cultures. Simultaneously, the uneven pattern of TLR receptors and modulatory cytokine gene expression was confirmed also on qRT-PCR level, but no significant differences were noticed between WJ-EPC and primary WJ-MSC cultures.