Toxins (Mar 2024)

Inhibition of Aflatoxin Production in <i>Aspergillus flavus</i> by a <i>Klebsiella</i> sp. and Its Metabolite Cyclo(<span style="font-variant: small-caps">l</span>-Ala-Gly)

  • Shohei Sakuda,
  • Masaki Sunaoka,
  • Maho Terada,
  • Ayaka Sakoda,
  • Natsumi Ishijima,
  • Noriko Hakoshima,
  • Kenichi Uchida,
  • Hirofumi Enomoto,
  • Tomohiro Furukawa

DOI
https://doi.org/10.3390/toxins16030141
Journal volume & issue
Vol. 16, no. 3
p. 141

Abstract

Read online

During an experiment where we were cultivating aflatoxigenic Aspergillus flavus on peanuts, we accidentally discovered that a bacterium adhering to the peanut strongly inhibited aflatoxin (AF) production by A. flavus. The bacterium, isolated and identified as Klebsiella aerogenes, was found to produce an AF production inhibitor. Cyclo(l-Ala-Gly), isolated from the bacterial culture supernatant, was the main active component. The aflatoxin production-inhibitory activity of cyclo(l-Ala-Gly) has not been reported. Cyclo(l-Ala-Gly) inhibited AF production in A. flavus without affecting its fungal growth in a liquid medium with stronger potency than cyclo(l-Ala-l-Pro). Cyclo(l-Ala-Gly) has the strongest AF production-inhibitory activity among known AF production-inhibitory diketopiperazines. Related compounds in which the methyl moiety in cyclo(l-Ala-Gly) is replaced by ethyl, propyl, or isopropyl have shown much stronger activity than cyclo(l-Ala-Gly). Cyclo(l-Ala-Gly) did not inhibit recombinant glutathione-S-transferase (GST) in A. flavus, unlike (l-Ala-l-Pro), which showed that the inhibition of GST was not responsible for the AF production-inhibition of cyclo(l-Ala-Gly). When A. flavus was cultured on peanuts dipped for a short period of time in a dilution series bacterial culture broth, AF production in the peanuts was strongly inhibited, even at a 1 × 104-fold dilution. This strong inhibitory activity suggests that the bacterium is a candidate for an effective biocontrol agent for AF control.

Keywords