Trapping of Ag<sup>+</sup> into a Perfect Six-Coordinated Environment: Structural Analysis, Quantum Chemical Calculations and Electrochemistry
Veronika I. Komlyagina,
Nikolay F. Romashev,
Vasily V. Kokovkin,
Artem L. Gushchin,
Enrico Benassi,
Maxim N. Sokolov,
Pavel A. Abramov
Affiliations
Veronika I. Komlyagina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
Nikolay F. Romashev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
Vasily V. Kokovkin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
Artem L. Gushchin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
Enrico Benassi
Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
Maxim N. Sokolov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
Pavel A. Abramov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
Self-assembly of (Bu4N)4[β-Mo8O26], AgNO3, and 2-bis[(2,6-diisopropylphenyl)-imino]acenaphthene (dpp-bian) in DMF solution resulted in the (Bu4N)2[β-{Ag(dpp-bian)}2Mo8O26] (1) complex. The complex was characterized by single crystal X-ray diffraction (SCXRD), X-ray powder diffraction (XRPD), diffuse reflectance (DR), infrared spectroscopy (IR), and elemental analysis. Comprehensive SCXRD studies of the crystal structure show the presence of Ag+ in an uncommon coordination environment without a clear preference for Ag-N over Ag-O bonding. Quantum chemical calculations were performed to qualify the nature of the Ag-N/Ag-O interactions and to assign the electronic transitions observed in the UV–Vis absorption spectra. The electrochemical behavior of the complex combines POM and redox ligand signatures. Complex 1 demonstrates catalytic activity in the electrochemical reduction of CO2.