Applied Sciences (Aug 2018)

Part Qualification Methodology for Composite Aircraft Components Using Acoustic Emission Monitoring

  • Shane Esola,
  • Brian J. Wisner,
  • Prashanth Abraham Vanniamparambil,
  • John Geriguis,
  • Antonios Kontsos

DOI
https://doi.org/10.3390/app8091490
Journal volume & issue
Vol. 8, no. 9
p. 1490

Abstract

Read online

The research presented in this article aims to demonstrate how acoustic emission (AE) monitoring can be implemented in an industrial setting to assist with part qualification, as mandated by related industry standards. The combined structural and nondestructive evaluation method presented departs from the traditional pass/fail criteria used for part qualification, and contributes toward a multi-dimensional assessment by taking advantage of AE data recorded during structural testing. To demonstrate the application of this method, 16 composite fixed-wing-aircraft spars were tested using a structural loading sequence designed around a manufacturer-specified design limit load (DLL). Increasing mechanical loads, expressed as a function of DLL were applied in a load-unload-reload pattern so that AE activity trends could be evaluated. In particular, the widely used Felicity ratio (FR) was calculated in conjunction with specific AE data post-processing, which allowed for spar test classification in terms of apparent damage behavior. To support such analysis and to identify damage critical regions in the spars, AE activity location analysis was also employed. Furthermore, recorded AE data were used to perform statistical analysis to demonstrate how AE datasets collected during part qualification could augment testing conclusions by providing additional information as compared to traditional strength testing frequently employed e.g., in the aerospace industry. In this context, AE data post-processing is presented in conjunction with ultimate strength information, and it is generally shown that the incorporation of AE monitoring is justified in such critical part qualification testing procedures.

Keywords