Iranian Journal of Allergy, Asthma and Immunology (Jun 2019)

Histamine (H1) Receptors, Cyclooxygenase Pathway and Nitric Oxide Formation Involved in Rat Tracheal Smooth Muscle Relaxant Effect of Berberine

  • Saeideh Saadat,
  • Farzaneh Naghdi,
  • Vahideh Ghorani,
  • Hassan Rakhshandeh,
  • Mohammad Hosein Boskabady

DOI
https://doi.org/10.18502/ijaai.v18i3.1125
Journal volume & issue
Vol. 18, no. 3

Abstract

Read online

In this study we aimed to examine the relaxant effect of berberine, a compound extracted from a variety of herbs, on rat tracheal smooth muscle (TSM) and its possible mechanism(s). Cumulative concentrations of berberine (20, 65, 200 and 600 μg/mL) were added on pre-contracted TSM by methacholine or KCl in non-incubated or incubated tissues with atropine, chlorpheniramine, propranolol, diltiazem, glibenclamide, indomethacin, L-NG-nitro arginine methyl ester (L-NAME) and papaverine. The relaxant effects of theophylline (0.2, 0.4, 0.6 and 0.8 mM) as positive control and saline (1 mL) as negative control were also examined in non-incubated tissues. Berberine showed significant and concentration-dependent relaxant effects in non-incubated tissues contracted by KCl and methacholine (p<0.01 to p<0.001). There was no significant difference in the relaxant effects of berberine between non-incubated and incubated tissues with atropine, propranolol, diltiazem, glibenclamide, and papaverine. The relaxant effects of second concentrations of berberine in incubated tissues with L-NAME, its three lower concentration in incubated tissues with chlorpheniramine and its all concentrations in incubated tissues with indomethacin were significantly lower than non-incubated tissues (p<0.05 to p<0.001). The EC50 values of berberine in incubated tissues with chlorpheniramine was significantly higher than the non-incubated condition (p<0.05). Our findings reveal a relatively potent relaxant effect of berberine that is lower than the effect of theophylline. Proposed mechanisms for the relaxant effect of berberine are histamine (H1) receptor blockade, inhibition of cyclooxygenase pathways and/or nitric oxide formation.

Keywords