BMC Ophthalmology (Aug 2021)

Changes in pulse waveforms in response to intraocular pressure elevation determined by laser speckle flowgraphy in healthy subjects

  • Chie Iwase,
  • Takeshi Iwase,
  • Ryo Tomita,
  • Tomohiko Akahori,
  • Kentaro Yamamoto,
  • Eimei Ra,
  • Hiroko Terasaki

DOI
https://doi.org/10.1186/s12886-021-02070-7
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background The influences of intraocular pressure (IOP) elevations on the pulse waveform in the optic nerve head (ONH) were evaluated using laser speckle flowgraphy (LSFG) in normal subjects. Methods This prospective cross-sectional study was conducted at the Nagoya University Hospital. An ophthalmodynamometer was pressed on the sclera to increase the IOP by 20 mmHg or 30 mmHg for 1 min (experiment 1, 16 subjects) and by 30 mmHg for 10 min (experiment 2, 10 subjects). The mean blur rate (MBR) and the eight pulse waveform parameters determined using LSFG were measured before, immediately after and during an IOP elevation, and after the IOP returned to the baseline pressure. Results A significant elevation in the IOP and a significant reduction in the ocular perfusion pressure (OPP) were found after applying the ophthalmodynamometer (both, P < 0.001). The blowout score (BOS) reduced significantly (P < 0.001), and the flow acceleration index (FAI; P < 0.01) and resistivity index (RI; P < 0.001) increased significantly immediately after increasing the IOP by 20 or 30 mmHg (experiment 1). The BOS reduced significantly (P < 0.001), and the FAI (P < 0.01) and RI (P < 0.001) increased significantly after the IOP elevation by 30 mmHg in both experiment 2 and 1. However, the BOS and RI recovered significantly at time 10 compared to that in time 0 (immediately after IOP elevation) during the 10-min IOP elevation (P < 0.001 and P = 0.008, respectively). Conclusions In conclusion, the BOS, FAI, and RI of the pulse waveforms changed significantly with an acute elevation in the IOP. The change should be related to the larger difference between the maximum and minimum MBRs during the IOP elevation.

Keywords