Cancer & Metabolism (Jul 2020)

Treatment of ErbB2 breast cancer by mitochondrial targeting

  • Sophia Eldad,
  • Rachel Hertz,
  • Gilad Vainer,
  • Ann Saada,
  • Jacob Bar-Tana

DOI
https://doi.org/10.1186/s40170-020-00223-8
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background ErbB2 breast cancer still remains an unmet need due to primary and/or acquired resistance to current treatment strategies. MEDICA compounds consist of synthetic long-chain α,ω-dicarboxylic acids previously reported to suppress breast cancer in PyMT transgenic mice. Methods MEDICA efficacy and mode of action in the ErbB2 context was studied in ErbB2 transgenic mice and human breast cancer cells. Results MEDICA treatment is shown here to suppress ErbB2 breast tumors and lung metastasis in ErbB2/neu MMTV transgenic mice, to suppress ErbB2/neu xenografts in nod/scid mice, and to suppress survival of AU565 and BT474 human ErbB2 breast cancer cells. Suppression of ErbB2 breast tumors by MEDICA is due to lipid raft disruption with loss of ErbB family members, including EGFR, ErbB2, and ErbB3. In addition, MEDICA inhibits mTORC1 activity, independently of abrogating the ErbB receptors and their signaling cascades. The double hit of MEDICA in abrogating ErbB and mTORC1 is partly accounted for by targeting mitochondria complex I. Conclusions Mitochondrial targeting by MEDICA suppresses ErbB2 breast tumors and metastasis due to lipid raft disruption and inhibition of mTORC1 activity. Inhibition of mTORC1 activity by MEDICA avoids the resistance acquired by canonical mTORC1 inhibitors like rapalogs or mTOR kinase inhibitors.

Keywords